
Chapter 4

POTENTIAL-WELL DISTORTION

4.1 THE GENERAL SOLUTION

In this chapter, we are going to study stationary bunch distributions, or distributions

that are time independent. From the Vlasov equation depicted in Eq. (3.18), it is evident

that the solution for the distribution ψ(τ, δE) must satisfy

[ψ,H] = 0 , (4.1)

or ψ must be a function of the Hamiltonian,

ψ = ψ(H) . (4.2)

Recall that the Hamiltonian of a particle with small amplitude synchrotron oscillations is

H = − η

2vβ2E0
(∆E)2 − ω2

0sβ
2E0

2ηv
τ 2 + V (τ ) , (4.3)

which describes the motion of the particle in the potential well

U(τ ) = −ω
2
0sβ

2E0

2ηv
τ 2 + V (τ ) . (4.4)

When the effects of the wake potential is removed, this is just a parabolic potential well.

In the presence of the wake potential, the potential well is distorted and the distribution

of the beam particle in the longitudinal phase space is therefore modified. As will be
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seen below, a purely reactive wake potential, meaning that the coupling impedance is

either inductive or capacitive, will modify the parabolic potential in such a way that the

potential well remains symmetric. Correspondingly, the distorted particle distribution

will also be head-tail symmetric. A wake potential with a resistive component, however,

will affect the symmetry of the parabolic potential well so that the bunch distribution will

no longer be head-tail symmetric.

4.2 THE REACTIVE FORCE

Consider a beam with linear density ρ(s−vt) traveling in the positive s direction inside

a cylindrical beam pipe of radius b with infinitely conducting walls. We also assume at

this moment that the beam is uniformly distributed transversely within a radius a which

does not vary longitudinally. We are interested in the longitudinal electric field Es seen

by the beam particles at the axis of the beam. To compute that we invoke Faraday’s law,

~∇× ~E = − ∂

∂t
~B , (4.5)

or in the integral form, ∮
~E ·d` = − ∂

∂t

∮
~B ·d ~A . (4.6)

In above, the closed path of integration of the electric field ~E is along two radii of the

beam pipe at s and s + ds together with two length elements at the beam axis and the

wall of the beam pipe, as illustrated in Fig. 4.1. The area of integration of the magnetic

flux density ~B is the area enclosed by the closed path. Now, the left side of Eq. (4.6)

becomes

L. S. = Esds+
eρ(s+ds−vt)

2πε0

[∫ a

0

rdr

a2
+

∫ b

a

dr

r

]
− eρ(s−vt)

2πε0

[∫ a

0

rdr

a2
+

∫ b

a

dr

r

]
, (4.7)

while the right side

R. S. = − ∂

∂t

µ0eρ(s−vt)v
2π

[∫ a

0

rdr

a2
+

∫ b

a

dr

r

]
ds . (4.8)

Assumption has been made that the 1/γ open angle of the radial electric field is small

compared with the distance ` over which the linear density changes appreciably, or b/γ �
`. In terms of the the squared-bracketed expressions in Eqs. (4.7) and (4.8), we can define

g0 = 2

[∫ a

0

rdr

a2
+

∫ b

a

dr

r

]
= 1 + 2 ln

b

a
, (4.9)
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Figure 4.1: Derivation of the space-charge longitudinal electric field Es experienced
by a beam particle in a beam of radius a in an infinitely conducting beam pipe of
radius b.

which is a geometric factor depending on the geometry of the beam and the beam pipe,

and it will deviate from Eq. (4.9) if we relax, for example, the restriction of the transverse

uniformity of the particle distribution. Combining the above, we arrive at

Es +
eg0

4πε0

∂ρ

∂s
= v2eµ0g0

4π

∂ρ

∂s
, (4.10)

or

Es = − eg0

4πε0γ2

∂ρ

∂s
, (4.11)

which is the space-charge force experienced by a particle in a beam.

The first application is a harmonic wave

ρ1(s−vt) ∝ ein(s/R−ω0t) , (4.12)

perturbing a coasting beam of linear density ρ0, where n is the revolution harmonic and

v = Rω0 with R being the radius of the accelerator ring. Substitution into Eq. (4.11)

results in the voltage

V = −EsC =
ineZ0cg0

2γ2
ρ1 (4.13)

seen by a beam particle per accelerator turn. The perturbing wave constitutes a per-

turbing current I1 = eρ1v. Therefore, the space-charge impedance per harmonic seen

is
Z
‖
0

n

∣∣∣∣∣
sp ch

=
iZ0g0

2γ2β
, (4.14)
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which is to be compared with Eq. (1.30). From Eq. (4.11), the space-charge force experi-

enced by a beam particle at position s and time t becomes

F (s, t) =
ie2v

2π

Z‖0
n

∣∣∣∣∣
sp ch

∂ρ(s, t)

∂s
. (4.15)

Since an inductive impedance can be viewed as a negative space-charge impedance, we

can write the force due to a general reactive impedance as

F (s, t) =
ie2v

2π

Z‖0
n

∣∣∣∣∣
reactive

∂ρ(s, t)

∂s
. (4.16)

When the position of the beam particle is measured in terms of time advanced τ of some

synchronous particles, the particle distribution λ(τ, t), which is normalized to the total

number of beam particles, is related to ρ(s, t) by

ρ(s, t)ds = λ(τ, t)dτ or
∂ρ(s, t)

∂s
=

1

v2

∂λ(τ, t)

∂τ
. (4.17)

The reactive force exerted on a beam particle becomes

F (τ, t) =
ie2

2πv

Z
‖
0

n

∣∣∣∣∣
reactive

∂λ(τ, t)

∂τ
. (4.18)

Of course, the above expression can also be obtained by substituting the reactive wake

function

W ′
0(τ ) = δ′(τ )

[
i

ω0

Z
‖
0

n

]
reactive

(4.19)

directly into Eq. (3.6).

The second application is on potential-well distortion. For a bunch, the head has a

negative slope or ∂λ/∂τ < 0, while the tail has a positive slope or ∂λ/∂τ > 0. For a

space-charge impedance, the head of the bunch is therefore accelerated and gains energy,

while the tail decelerated and loses energy. Below transition, the head will arrive earlier

after one turn while the tail arrives later, resulting in the spreading out of the bunch. The

space-charge force therefore distorts the rf potential by counteracting the rf focusing force.

On the other hand, an inductive force will help to enhance rf focusing. The opposite is

true above transition.



4.3. HAISSINSKI EQUATION 4-5

4.3 HAISSINSKI EQUATION

For an electron bunch, because of the random quantum radiation and excitation,

stationary distribution should have a Gaussian distribution in ∆E, or

ψ(τ,∆E) =
1√

2πσE
exp

(
−∆E2

2σ2
E

)
ρ(τ ) , (4.20)

where σE is the rms beam energy spread determined by synchrotron radiation. Noting

Eq. (4.2) and Hamiltonian in Eq. (4.3), we must have

ψ(τ,∆E) ∝ exp

(
vβ2E0

ησ2
E

H

)
. (4.21)

The linear density or distribution ρ(τ ) is obtained by integrating over ∆E. Doing that,

we finally arrive at a self-consistent equation for the line density, from, for example,

Eqs. (3.16) and (3.17),

ρ(τ ) = ρ(0) exp

[
−
(
ω0sβ2E0

ησE

)2
τ 2

2
+
e2β2E0

ηT0σ2
E

∫ τ

0

dτ ′′
∫ ∞
τ ′′

dτ ′ρ(τ ′)W ′
0(τ
′ − τ ′′)

]
. (4.22)

This is called the Haissinski equation [1], where the constant ρ(0) is obtained by normal-

izing to the total number of particles in the bunch:∫
dτρ(τ ) = N . (4.23)

The solution will give a line distribution that deviates from the Gaussian form, and we

call this the potential-well distortion. Since the rf voltage is modified, the synchrotron

frequency also changes from ω0s/(2π) to perturbed incoherent ωs/(2π) accordingly.

For a purely resistive impedance Z
‖
0 (ω) = Rs, W ′

0(z) = Rsδ(z/v), the equation can

be solved analytically giving the solution [3]

ρ(τ ) =

√
2/πe−τ

2/(2σ2
τ )

αRστ{coth(αRN/2) − erf[τ/(
√

2στ)]}
, (4.24)

where στ = |η|σE/(β2ωsE0). αR=e2β2E0Rs/(ηT0σ2
E), and erf(x) = (2/

√
π)
∫ x

0
e−t

2
dt is the

error function. For a weak beam with |αR|N . 1, the peak beam density occurs at

τ =
αRN√

2π
στ . (4.25)
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Figure 4.2: Plot of bunch profiles between ±5 σs for αRN = −10, −5, 0, 5, and 10,
according to the solution of the Haissinski equation when the impedance is purely
resistive. These profiles are normalized to στ

√
π/2 when integrated over τ . It is

evident that the profile leans forward above transition (αR > 0) and backward below
transition (αR < 0).

This peak moves forward above transition (αR > 0) and backward below transition (αR <

0) as the beam intensity increases. This effect comes from the parasitic loss of the beam

particle which is largest at the peak of the linear density ρ(τ ) and smallest at the two

ends. Those particles losing energy will arrive earlier/later than the synchronous particle

in time above/below transition and the distribution therefore lean forward/backward.

Such bunch profiles are plotted in Fig. 4.2 for αRN = −10, −5, 0, 5, and 10. In the plots,

the linear densities are normalized to στ
√
π/2 when integrated over τ .

When the longitudinal impedance is purely inductive,W ′
0(z) = Lδ′(z/v), the Haissin-

ski equation becomes

ρ(τ ) = ke−τ
2/(2σ2

τ )−αLρ(τ ) , (4.26)

where k is a positive constant and αL = e2β2E0L/(ηT0σ2
E
). Thus, ρeαLρ is an even function

of τ , and it appears that the distorted distribution ρ is also an even function of τ . The

line distribution will be left-right symmetric. Thus, the reactive part of the impedance

will either lengthen or shorten the bunch, while the resistive part will cause the bunch to

lean forward or backward. When |αL|N . 1, we can iterate,

ρ ≈ ke−τ2/(2σ2
τ )
(

1− kαLe−τ
2/(2σ2

τ )
)
. (4.27)
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In above, k represents the particle density at the center of the bunch. Now for αL > 0,

effectively k becomes smaller. In other words, the distribution spreads out, or the effective

rms bunch length becomes larger than στ . This is the situation of either a repulsive

inductive impedance force above transition or a repulsive capacitive force (L < 0) below

transition. On the other hand, for an attractive inductive force below transition or an

attractive capacitive force above transition, αL < 0 and the bunch will be shortened.

The longitudinal wake potential of the damping rings at the SLAC Linear Collider has

been calculated carefully. Using it as input, the Haissinski equation is solved numerically

at various beam intensities. The results are shown as solid curves in Fig. 4.3 along with

the actual measurements. The agreement has been very satisfactory [2].

Figure 4.3: Potential-well distortion of bunch shape for various beam intensities for
the SLAC SLC damping ring. Solid curves are solution of Haissinski solutions and
open circles are measurements. The horizontal axis is in units of unperturbed rms
bunch length σz0, while the vertical scale gives y = 4πeρ(z)/[V ′rf(0)σz0]. The beam
is going to the left.
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4.4 ELLIPTICAL PHASE-SPACE

DISTRIBUTION

An easier way to compute the bunch length distorted by the reactive impedance is

to consider the elliptical phase-space distribution

ψ(τ,∆E) =
3N |η|

√
κ

2πβ2ωsE0τ̂ 3
0

√
τ̂ 2

0 −
(

η

β2ωsE0

)2

∆E2 − κτ 2 . (4.28)

This distribution has a constant maximum energy spread of

∆̂E =
β2ωsE0τ̂0

|η| , (4.29)

which is determined by synchrotron radiation, while the half width of the bunch

τ̂ =
τ̂0√
κ

(4.30)

is determined by the parameter κ. This distribution when integrated over ∆E gives the

normalized parabolic line distribution

ρ(τ ) =
3N
√
κ

4τ̂ 3
0

(
τ̂ 2

0 − κτ 2
)
. (4.31)

With the reactive wake function W ′
0(z) = Lδ′(z/v), the Hamiltonian of Eq. (3.17) can

therefore be written as a quadratic in ∆E and τ :

H = − η

2vβ2E0
(∆E)2 − ω2

sβ
2E0

2ηv
τ 2 − e2L

C
ρ(τ ) (4.32)

=
ω2
sβ

2E0

2ηv

[
−
(

η

β2ωsE0

)2

∆E2 − τ 2(1−Dκ3/2)

]
, (4.33)

where

D =
3e2NηvL

2ω2
sβ

2E0Cτ̂ 3
0

. (4.34)

To be self-consistent, the expression of ψ in Eq. (4.28) must be a function of the Hamil-

tonian. Comparing Eq. (4.28) with Eq. (4.33), we arrive at

κ = 1−Dκ3/2 (4.35)
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Figure 4.4: Potential well distortion of the bunch shape in the longitudinal phase
space. D > 0 corresponds to either an inductive perturbation above transition or
a capacitive perturbation below transition, while D < 0 implies either an inductive
perturbation below transition or a capacitive perturbation above transition. Top row
is for electron rings where the energy spread remains constant as a result of radiation
damping. Bottom row is for proton rings where the bunch area is constant.

or (
τ̂

τ̂0

)3

=

(
τ̂

τ̂0

)
+D . (4.36)

This cubic can be solved by iteration. First we put τ̂ /τ̂0 = 1 on the right side. If

D > 0, we find τ̂/τ̂0 > 1 or the bunch is lengthened. If D < 0, it is shortened. The

former corresponds to either an inductive force above transition or a capacitive force

below transition. The latter corresponds to either an inductive force below transition or a

capacitive force above transition. This is illustrated in the first row of Fig. 4.4, where we

notice that the energy spread of the bunch is unchanged for various types of perturbation.

For a proton bunch, the energy spread is also modified but the bunch area remains

constant. The phase-space distribution has to be rewritten as

ψ(τ,∆E) =
3N |η|

2πβ2ωsE0τ̂ 3
0

√
τ̂ 2

0 −
1

κ

(
η

β2ωsE0

)2

∆E2 − κτ 2 . (4.37)
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Now we have

τ̂ =
τ̂0√
κ

and ∆̂E =
√
κ∆̂E0 . (4.38)

Again comparing with the Hamiltonian, we arrive at the quartic equation(
τ̂

τ̂0

)4

= 1 +D

(
τ̂

τ̂0

)
. (4.39)

This is illustrated in the bottom row of Fig. 4.4.

4.5 COMPENSATING OF POTENTIAL-WELL

DISTORTION

Potential-well distortion can often be a serious problem in the operation of an accel-

erator or storage ring. If the distortion opposes the rf bunching, a much larger rf voltage

and hence rf power will be required to counteract the distortion. Even when compensated

by a higher rf voltage, the rf bucket may have been so much distorted that its useful

area has very much been reduced. An example is the Los Alamos PSR, which stores an

intense proton beam at the kinetic energy of 797 MeV. The ring has a transition gamma

of γt = 3.1, implying that the operation of the ring is below transition. The longitudi-

nal space-charge force is therefore repulsive in nature and tends to lengthen the bunch.

This longitudinal repulsive force will counteract the rf bunching force. We will study how

serious the potential-well distortion is and possible way to cure the problem.

The PSR has a circumference of 90.2 m. It receives chopped proton beams from a

linac in 1000 to 2000 turns. The beam is bunched by a rf buncher to the desired length

and is then extracted for experimental use. The rf buncher is of rf harmonic h = 1,

or there is only one bunch. The revolution frequency and the rf frequency are both

2.796 MHz. A typical store consists of a bunch consisting of 3.2 × 1013 protons, of half

length τ̂ = 133.5 ns, occupying roughly two third of ring, and a half energy spread of

∆̂E/E0 = 0.005. If space charge is neglected, to keep such a bunch matched to the rf

bucket, the synchrotron tune is

ν0s =
|η|∆̂E0

ω0β2Eτ̂
= 0.000402 , (4.40)

and the required rf voltage is

Vrf =
2πβ2E0ν2

0s

|η|h = 6.60 kV . (4.41)
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Now let us estimate the space-charge effect [4]. The 95% (or full) normalized transverse

emittance is 50×10−6 πm. From this and the ring lattice, the g0 factor has been estimated

to be

g0 = 1 + 2 ln
b

a
≈ 3.0 , (4.42)

where a is the beam radius and b the beam pipe radius. The longitudinal space-charge

impedance is therefore (
Z
‖
0

n

)
spch

= i
Z0g0

2γ2β
≈ i196 Ω . (4.43)

according to Eq. (4.18), a particle with an arrival time τ ahead of the synchronous particle

sees an electric field

Es spch = − e

2πβc

∣∣∣∣∣Z‖0n
∣∣∣∣∣
spch

dλ

dτ
, (4.44)

where λ(τ ) is the linear particle density of the bunch and is normalized to the number of

particle in the bunch by integrating over τ . This electric field comes from the longitudinal

space-charge effect and is in the direction of the motion of the bunch. It is positive in

the head half of the bunch (τ > 0) and negative in the tail half (τ < 0). It is therefore

repulsive. Assume a parabolic distribution,

λ(τ ) =
3N

4τ̂

(
1− τ 2

τ̂ 2

)
, (4.45)

so that the electric field becomes linear in τ . The particle will gain in a turn the potential

Vspch = Es spchC =
3eN

2ω0τ̂ 2

∣∣∣∣∣Z‖0n
∣∣∣∣∣
spch

τ

τ̂
= 4.82

τ

τ̂
kV , (4.46)

according to its position in the bunch. This potential is of roughly the same size as the

rf voltage required if there is no space charge. Thus, in the presence of space charge, we

need to increase Vrf from 6.60 kV to approximately 6.60+ 4.82 = 11.42 kV; nearly 42% of

the rf voltage has been spent to counteract the space-charge force. One must realize that

the rf buncher at PSR was capable to deliver only 12 kV in 1997. Although the rf buncher

has been upgraded to about 18 kV, there is also a goal to increase the beam intensity to

5× 1013 protons as well.

4.5.1 FERRITE INSERTION

It has been proposed that if ferrite rings (also called cores) are installed inside the
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vacuum chamber, the proton beam will see an extra inductive impedance from the ferrite,

and hopefully this inductive impedance will cancel the capacitive space-charge impedance

of the beam [5, 6]. Toshiba M4C21A ferrite rings are used, each having an inside diameter

di = 12.7 cm, outside diameter do = 20.3 cm, and thickness t = 2.54 cm. The relative

magnetic permeability is µ′ ≈ 70 at the PSR rotation frequency, 2.796 MHz. For nf
ferrite rings stacked together, the impedance per harmonic is

Z
‖
0

n ferrite
= −iZ0ω0tnf

2πc
µ′ ln

do
di

= 2.93nf Ω . (4.47)

Thus, to cancel a space-charge impedance per harmonic of ∼ 300 Ω, about nf = 102 will

be needed. Three ferrite inserts were assembled. Each consisted of a stainless-steel pill-box

cavity having an inner diameter of 20.3 cm and inner length of 75.5 cm, so that 30 ferrite

cores could be packed inside. To prevent charge buildup on the inner surface of the cores,

each of the cores were treated with a very thin (1 MΩ per square) conductive coating

(Heraeus R8261) baked on the inner and outer surface. Additional radial conducting

‘spokes’ were added to provide conductivity from the inner surface to the outer wall of

the chamber. Solenoidal wiring was wound outside the stainless steel container so that

the magnetic permeability of the ferrite could be controlled.

Two such ferrite tuners or inserts were installed in the PSR in 1997. To study space-

charge compensation caused by the installed inductance, two experiments, using different

bunch lengths, were completed. The designated charge configurations were injected into

the PSR and the longitudinal profiles (bunch length and shape) were observed, digitized,

and recorded using signals from a wide-band wall current monitor at the end of each

625-µs injection period. The experiments were performed for two bunch lengths: ∼ 50 ns

(half length) with 4.0× 1012 particles and ∼ 150 ns (half length) with 1.2× 1013. The rf

voltage was set to 7 kV in both cases. The resulting waveforms are compared with detailed

particle tracking simulations in Fig. 4.5 for the two bunch lengths. The solid curve in the

top left plot represents the bunch shape with the full effect of the inserted inductance (zero

bias). The dotted curve corresponds to data with the effect of the inductance diminished

by 900-A dc bias. The difference of peak heights is about 16%. Simulations performed

with assumed injection momentum spread ∆p/p = 0.08% are shown in the top right plot.

They predict an rms bunch length of 19 ns, but increasing to 22 ns when the ferrite bias

current is raised to 900 A with the inductance reduced to 34% of its unbiased value. We

sees that the experiment measurements are consistent with the simulation predictions.

Similar conclusion can be drawn for the long-bunch-length situation shown in bottom

plots of Fig. 4.5. We see that bunch lengths have been reduced with the ferrite insertion,
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Figure 4.5: Measured (left) and simulated (right) pulse shapes after 625 µs, for
injected pattern widths of 50 ns with 4.0× 1012 protons (bottom) and 150 ns with
1.2× 1013 protons In both cases, Vrf = 7.5 kV. Solid: no bias, dotted: 900-A bias
or a reduction of µ′ by factor or 34%.
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Figure 4.6: Left: Measured frequency shifts of the quadrupole oscillations versus
beam intensity at KEK with and without Finemet. Right: New KEK results of
quadrupole oscillation frequency versus beam intensity with Finemet tuners on, 1

3

on, and off.

indicating that the space-charge impedance has been cancelled to a certain extent.

It is unfortunate that we cannot measure the change in synchrotron frequency so as to

demonstrate the cancellation of space charge. This is mainly due to the slow synchrotron

oscillation in the PSR. During the whole storage time, the beam particles usually make

less than one synchrotron oscillation. A similar experiment has also been performed

at the KEK PS Main Ring, but with a much lower intensity of 2 to 9 × 1011 protons

per bunch [7]. The beam kinetic energy was 500 MeV with a space-charge impedance

Z
‖
0/n = i310 Ω. Instead of ferrite, a Met-Glass-like material called Finemet was used.

The coherent frequency of the quadrupole synchrotron oscillation was measured as a

function of bunch intensity. As shown in Fig. 4.6, with the inductor tuner on, the coherent

frequency was less dependent on intensity, indicating that the space-charge force had been

partially cancelled.

The second experiment at PSR is to measure the onset of vertical instability using

a short-stripline beam-position monitor. With a 3.0 × 1013 proton beam stored, the rf

voltage was lowered until vertical instability was registered. This signal comes about when

the rf bucket is not large enough to hold the bunch so that some protons spill out into

the bunch gap. These protons trap electrons preventing them to be cleared and causing a

transverse e-p instability. It was found that, at the highest beam intensity the required rf
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voltage was reduced to 60% of what had previously been necessary to maintain stability.

This result indicates that the space-charge impedance has been compensated to a certain

extent by the ferrite cores installed in the vacuum chamber. Thus, less rf voltage will be

required to bunch the proton beam. The compensation of the potential-well distortion,

however, was far from being perfect. This is because a longitudinal instability has been

observed. At the intensity of 3.2×1013 protons, this instability has been small and appears

to be tolerable. When the beam intensity was upgraded, however, the instability had been

so intense that the beam profiles became heavily distorted and there was a considerable

of beam loss. This instability together with its eventual cure will be discussed in detail

in Sec. 5.7.

4.6 EXERCISES

4.1. Transform the Haissinski equation (4.22) according to the following:

(1) Notice that the integral over τ ′′ can be rewritten as∫ τ

0

dτ ′′ →−
∫ ∞
τ

dτ ′′ , (4.48)

where the extra constant can be absorbed into the normalization constant ρ(0) which

we rename by ξ.

(2) The integration in the τ ′-τ ′′ space is in the 0◦ to 45◦ quadrant between the lines

τ ′′ = τ and τ ′′ = τ ′. Translate the τ ′ and τ ′′ axes so that the region of integration

is now between the τ ′-axis and the 45◦ line τ ′′ = τ ′.

(3) Integrate over τ ′′ first from 0 to τ ′; then integrate over τ ′.

(4) Change the variable τ ′′ to τ ′− τ ′′. Now the Haissinski equation takes the more

convenient form

ρ(τ ) = ξ exp

[
−
(
ωsβ2E0

ησE

)2
τ 2

2
− e2β2E0

ηT0σ2
E

∫ ∞
0

dτ ′ρ(τ+τ ′)

∫ τ ′

0

dτ ′′W ′
0(τ ′′)

]
.

(4.49)

Notice that ρ(τ ) on the left side only depends on the ρ on the right side evaluated in

front of τ . We can therefore solve for ρ at successive slices of the bunch by assigning

zero or some arbitrary value to ρ at the very first slice (the head) and some value

to the constant ξ. The value of ξ is varied until the proper normalization of ρ is

obtained.

4.2. The bunch in the Fermilab Tevatron contains N = 2.7 × 1011 protons and has a

designed half length of τ̂ = 2.75 ns. The ring main radius is R = 1 km and the slip
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factor is η = 0.0028 at the incident energy of E0 = 150 GeV. The rf harmonic is

h = 1113 and the rf voltage is Vrf = 1.0 MV. Assume a broad-band impedance cen-

tered at ωr/(2π) ≈ 3 GHz, quality factor Q = 1, and shunt impedance Rs = 250 kΩ.

(1) Show that the frequencies that the bunch samples are much less than the res-

onant frequency of the broad-band, so that the asymmetric beam distortion driven

by ReZ‖0 can be neglected. (2) Using only the inductive part of the impedance

at low frequencies, compute from Eq. (4.39) the equilibrium bunch length as a re-

sult of potential-well distortion. (3)) Electron bunches are usually very short. If

an electron bunch of rms bunch length 2 cm is put into the Tevatron, show that

its spectrum will sample the resonant peak of ReZ‖0 and thus suffer asymmetric

distortion. Verify this by substituting the data into Eq. (4.24).

4.3. From Eq. (4.36) for an electron bunch, show that there are two solutions for the

perturbed bunch length due to distortion by a capacitive impedance when−2/33/2 <

D < 0. Which one is physical? When D < −2/33/2, there is no solution. At this

critical situation, the bunch shortening ratio is 3−1/2.

Hint: Transform Eq. (4.36) to

4x3 − 3x =
33/2

2
D (4.50)

and substitute for x = sin θ. What is the right side in terms of θ?

4.4. When the coupling impedance is purely resistive,

(1) derive the potential-well distorted linear distribution, Eq. (4.24).

(2) Show that when the intensity of the bunch is weak, the peak of the distribution

is given by Eq. (4.25).

Hint: Transform the Haissinski equation to a differential equation,

ρ′ +
τ

σ2
τ

ρ− αRρ2 = 0 . (4.51)

Solve the equation and determine ρ(0).
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